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ABSTRACT
The progress of fine-grained visual categorization (FGVC) benefits
from the application of deep neural networks, especially convolu-
tional neural networks (CNNs), which heavily rely on large amounts
of labeled data for training. However, it is hard to obtain the accu-
rate labels of similar fine-grained subcategories because labeling
needs professional knowledge, which is labor-consuming and time-
consuming. Therefore, it is appealing and significant to recognize
these similar fine-grained subcategories with a few labeled samples
or even only one for training, which is a highly challenging task.
In this paper, we propose OLOS (Only Learn One Sample), a new
data augmentation approach for fine-grained visual categorization
with only one sample training, and its main novelties are: (1) A 4-
stage data augmentation approach is proposed to increase both
the volume and variety of the one training image, which provides
more visual information with multiple views and scales. It consists
of a 2-stage data generation and a 2-stage data selection. (2) The
2-stage data generation approach is proposed to produce image
patches relevant to the object and its parts for the one training
image, as well as produce new images conditioned on the textual
descriptions of the training image. (3) The 2-stage data selection
approach is proposed to conduct screening on the generated images
in order that useful information is remained and noisy information
is eliminated. Experimental results and analyses on fine-grained
visual categorization benchmark demonstrate that our proposed
OLOS approach can be applied on top of existing methods, and
improves their categorization performance.
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1 INTRODUCTION

Great Crested Flycatcher Acadian Flycatcher Indigo Bunting

Small variance among different subcategories Large variance in the same subcategory

Figure 1: Examples of fine-grained subcategories with subtle
and local distinctions in the category of birds fromCUB-200-
2011 dataset [1].

Fine-grained visual categorization (FGVC) is to distinguish the fine
distinctions among similar subcategories, i.e. the fine distinction
into species of animals [1] and plants [2], of car [3] and aircraft
types [4], etc.. As shown in Figure 1, the variance among different
subcategories is small, but that in the same subcategory is large,
which make fine-grained visual categorization a highly challenging
task. Due to the application of deep learning, especially the convo-
lutional neural networks (CNNs), fine-grained visual categorization
has achieved great progress [5–9] in recent years. Deep learning
allows computational models that are composed of multiple pro-
cessing layers to learn the representation of data with multiple
levels of abstraction [10]. Its success depends on the advance of
hardware accelerator, e.g. fast graphics processing units (GPUs) 1,
which accelerate the training of the networks by 10 ∼ 100 times
faster, as well as large amounts of labeled data, e.g. the large scale
ImageNet dataset [11], which is widely used in computer vision
tasks.

Unfortunately, it is difficult and expensive to acquire large amounts
of labeled training data [12]. These labeled data is generally ac-
quired by using the service of Amazon Mechanical Turk (AMT)
2 to label the objects in images [13]. AMT is an online platform
that asks workers to complete the labeling task, which leads to the
fact that workers need to have the specialized knowledge about
the data to be labeled. For the datasets of basic-level visual cat-
egorization, workers only need to identify categories with large
variances, such as birds, dogs, cars and chairs. Such labeling task
can be completed by common workers. However, for the datasets
of fine-grained visual categorization, which aims to distinguish
the fine distinctions among similar subcategories, workers need to
1http://www.nvidia.cn
2https://www.mturk.com
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Category

• Small songbird.

• Pale gray back.

• Faintly striped throat.

• Long, barred tail.

• Long, thin bill.

Rock Wren

• Small brown bird with thin bill.

• Tail often held upright.

• Dark cap.

• Whitish eyeline.

• Bold black-and-white streaks 

on back.

• Buffy flanks, whitish chest.

Marsh Wren

• Small songbird.

• Brown body.

• White throat.

• Bright rufous, barred tail.

• Long, thin, decurved bill.

Canyon Wren

• Small but chunky bird.

• Round body.

• Long tail.

• The head is large with very 

little neck.

• Distinctive bill.

Carolina Wren

Image

Description

Figure 2: Examples of images and their textual descriptions coexisted in the same web page of “All About Birds” website 4.

have professional knowledge or undergo prior training before the
labeling. It is very expensive to employ the experts to label. Gebru
et al. [13] report that building a fine-grained car dataset with over
2 million annotations would cost over $300,000. We can conclude
that it is difficult and expensive to acquire a dataset of fine-grained
visual categorization.

Fortunately, with the development of Internet, we can easily
acquire a few labeled images (may be only one labeled image) from
the encyclopedia or e-commerce websites, such as the websites of
“Wikipedia” 3, “All About Birds” 4 and “Cars” 5. There exists a phe-
nomenon that we should pay attention to: On the above websites,
there are some textual descriptions coexisting with the image of the
subcategory, which can tell the key characteristics of the subcate-
gory, and provide the complementary information for the visual
information. Figure 2 shows some examples of images and their
textual descriptions coexisted in the same web page. Inspired by
this, an intuitive idea is to learn representations and knowledge of
the fine-grained subcategories with a little labeled data, especially,
with only one labeled sample per subcategory (e.g. one image and
its subcategory label as well as its textual descriptions), which is a
significant and challenging problem.

Besides, fine-grained visual categorization has its own challenges:
large variance in the same subcategory and small variance among
different subcategories, as shown in the first line and second line
of Figure 1 respectively. So fine-grained visual categorization with
only one sample training is more challenging and significant. To the
best of our knowledge, there are few researches on this problem.

Note that it is different from zero-shot learning [14], and has two
greater challenges: (i) Smaller data scale. As is known to all, good
performance of deep learning relies on a large scale of training
data. However, we only use one image per subcategory. In zero-
shot learning, all training images of seen subcategories are used.

3https://en.wikipedia.org
4https://www.allaboutbirds.org
5https://www.cars.com/

For example, in CUB-200-2011 dataset [1], we only use 200 images,
while zero-shot learning uses about 4500 images, 22 times of ours.
(ii) Less extern annotations or prior knowledge. In zero-shot learn-
ing, human-encoded attributes [15], WordNet-hierarchy-derived
features [16] and Word2Vec [17] are also used.

Therefore, this paper proposes a new data augmentation ap-
proach (OLOS) for fine-grained visual categorization only with one
sample training, which consists of a 2-stage data generation and a
2-stage data selection. Its main contributions can be summarized
as follows:
• A 4-stage data augmentation approach is proposed to in-
crease both the volume and variety of the one training image,
which provides more visual information with multiple views
and scales.
• A 2-stage data generation approach is proposed to produce
image patches relevant to the object and its parts for the one
training image, as well as produce new images conditioned on
the textual descriptions of the training image.
• A 2-stage data selection approach is proposed to conduct
screening on the generated images of the one training image in
order that useful information is remained and noisy information
is eliminated.
• Our proposed OLOS approach can be applied on top of existing
methods, and improves their categorization accuracies, which
has been verified by the experimental results.
The rest of this paper is organized as follows: Section 2 briefly

reviews the related works on fine-grained visual categorization,
zero-shot learning and data augmentation. Section 3 presents our
OLOS approach in detail, and Section 4 introduces the experimen-
tal results as well as the experimental analyses. Finally, Section 5
presents the conclusion and future works of this paper.

2 RELATEDWORK
In this section, we review the related works of fine-grained visual
categorization, zero-shot learning and data augmentation.

Session: Vision-3 (Applications in Multimedia) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1373



2.1 Fine-grained Visual Categorization
Fine-grained visual categorization is one of the most fundamen-
tal and challenging open problems in computer vision, and has
drawn extensive attention in both academia and industry. Early
works [18, 19] focus on the design of feature representations and
classifiers based on the basic low-level descriptors, such as SIFT
[20]. However, the performance of these methods is limited due
to the low representation ability of the handcrafted features. Re-
cently, deep learning has achieved great success in the domains of
computer vision, speech recognition, natural language processing
and so on. Inspired by this, many researchers begin to study on
the problem of fine-grained visual categorization based on deep
learning, and have achieved great progress [5, 6, 21–23].

Since the discriminative characteristics generally localize in the
regions of the object and its parts, most existing works generally
follow the 2-stage pipeline: first localize the object and its parts,
and then extract their features to train classifiers. For the first stage,
some works [24, 25] directly utilize the human annotations (i.e. the
bounding box of the object and part locations) to localize the object
and parts. Since the human annotations are labor-consuming, some
researchers begin to only utilize them in the training phase. Zhang
et al. propose the Part-based R-CNN [6] to directly utilize the object
and part annotations to learn the whole-object and part detectors
with geometric constraints between them. This framework is widely
used in fine-grained visual categorization.

Recently, fine-grained visual categorization methods begin to
focus on how to achieve promising performance without using
any object or part annotations. The first work under such weakly
supervised setting is the two-level attention model [5], which uti-
lizes the attention mechanism of the convolutional neural networks
(CNNs) to select region proposals related to the object and its parts,
and achieves promising results even compared with those methods
relying on the object and part annotations. Inspired by this work,
Zhang et al. [23] incorporate deep convolutional filters for both
parts selection and description. He and Peng [21] integrate two
spatial constraints for improving the performance of parts selection.

2.2 Zero-shot Learning
Zero-shot learning aims to recognize new categories that are not
seen in the training phase, so it is a challenging task. Most of the
existing methods take the advantage of external knowledge, such
as attribute, Wikipedia. Lampert et al. [15] apply the attributes,
such as object’s color or shape, to recognize the new categories
based on their attributes. Elhoseiny et al. [26] utilize the knowledge
extracted form Wikipedia to represent the new categories.

It is noted that zero-shot learning is different from the one train-
ing sample problem explored in this paper. One training sample
problem has smaller data scale and less extern annotations or knowl-
edge, which make it more challenging.

2.3 Data Augmentation
Data augmentation is widely used to reduce the model overfitting
on the training data [27]. Traditional data augmentation in CNNs
usually contain generating image translations and horizontal reflec-
tions, as well as randomly cropping some patches from the original
images, which effectively improve the performance of CNNs. Scale

augmentation [28] and color augmentation [27] are also used to
improve the performance and generalization of CNNs [29]

3 OUR OLOS APPROACH
In this section, we present the OLOS approach, which is a new
approach to augment training data for fine-grained visual cate-
gorization only with one sample training, as shown in Figure 3.
It applies a 4-stage process to augment the training data, which
consists of a 2-stage data generation (i.e. data proposal and data
synthesis) and a 2-stage data selection (i.e. data filtering and data
re-selection). The 4 stages are as follows: (1) Stage 1: Data proposal
is to generate image patches for the one training image. (2) Stage
2: Data filtering is to remove the image patches that are full of
background. (3) Stage 3: Data re-selection is to further select the
truly useful image patches for the learning of CNNs. (4) Stage 4:
Data synthesis is to further generate images to enrich the variety
of training data based on the textual descriptions of the training
image. In the following subsections, we present each stage in detail.

3.1 Stage 1: Data Proposal
The performance of CNN relies on a large amount of labeled train-
ing data. So we propose a 2-stage data generation to produce some
more images for the one training image, which provides more visual
information with multiple views and scales. The two stages are data
proposal and data synthesis, which are presented in Section 3.1 and
Section 3.4 respectively. (1) Data proposal is to generate thousands
of image patches with high objectness by grouping related pixels
into regions, some of which may contain the object and its parts. (2)
Data synthesis is to generate images corresponding to the textual
descriptions of the fine-grained subcategory by generative adver-
sarial network (GAN) [30], which can relate the visual information
and textual descriptions of the same fine-grained subcategory.

Data proposal can be implemented by bottom-up process, such
as selective search [31], an unsupervised and widely-used method
to generate such image patches. Some of these image patches are
relevant to the object and its parts, which provide multiple views
and scales of original image to boost the learning of CNNs.

However, we cannot directly utilize these image patches to aug-
ment the training data, which will cause reduction of CNNs’ per-
formance, as analyzed in Section 4.5. This is because the bottom-up
process has high recall but low precision, which means that some
image patches are full of background, and not helpful or even have
side effects to the learning of CNNs. So it is significant to filter the
bad image patches. We propose a 2-stage data selection to address
this problem, which consists of data filtering and data re-selection,
as presented in Section 3.2 and Section 3.3.

3.2 Stage 2: Data Filtering
In this stage, we aim to eliminate the image patches which are full of
background, and remain the image patches that are relevant to the
object or its parts. Besides, we train the CNNs progressively with
the filtered data. Data filtering and progressive training supplement
each other, and further improve the performance of fine-grained
visual categorization with one sample training.

First, we train the CNN model with one image per fine-grained
subcategory based on a pre-trained model, which is trained on
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Data Proposal
Stage-I Data Generation

Data Re-selection

Stage-II Data Selection

Data Filtering

Stage-I Data Selection

Data Synthesis

Stage-II Data Generation

Yellow Warbler?

...

Postive 

Bag

Negative 

Bags

a small grey bird with a 

narrow pointed beak

Figure 3: Anoverviewof ourOLOS approach,which consists of 4 stages: (1) Data proposal. (2) Data filtering. (3) Data re-selection.
(4) Data synthesis.

the ImageNet dataset [11]. Then, we obtain the first CNN model,
denoted asM1, which has the ability to filter the image patches that
are full of background.We feed the image patches generated by data
proposal toM1, and output the activations of neurons in softmax
layer. If the activation of the neuron corresponding the labeled
subcategory is the maximum value among all the activations, the
image patch is remained, otherwise eliminated. The remained image
patches contain the decisive regions of the object for categorization,
which are mostly contain the object and its parts, and provide more
visual information of the original image with multiple views and
scales. Then, we use the remained image patches to augment the
training data and fine-tune CNN model asM2, which has the more
powerful ability of categorization thanM1.

3.3 Stage 3: Data Re-selection
Even the image patches obtained through data proposal and data
filtering have played a positive role in the learning of CNNs, a
few of them still have side effects. In this stage, we aim to further
remove the bad image patches via data re-selection.

A problem we face to is that we do not know which patch is
good and which one is bad. Fortunately, we clearly and certainly
know there are good image patches in the remained image patches.
Therefore, we address this problem via multi-instance learning
(MIL). We define the problem as follows:

For the one image I used for training, which belongs to the fine-
grained subcategory ci , its remained image patches are denoted as
Pci = {p1,p2, ...,pn }, where n is different for different images. They
are grouped into a bag, and denoted as Bci . Therefore, we can obtain
a set of bags for the dataset, denoted as B = {Bc1 ,Bc2 , ...,BcS },
where S denotes the number of fine-grained subcategories in the
dataset. We regard the fine-grained visual categorization as multiple
binary categorization problems, which means that we need to train
S binary classifiers. For clarity, we describe the process of training
i-th binary classifier in detail.

Since there must be at least one image patch pj ∈ Pci is a positive
example belonging to fine-grained subcategory ci , and its label
ypj = 1, then the bag Bci is associated a label Yci , and Yci = 1. For
the bags of the other subcategories, their labels are −1. In general,
the relation between the patch label ypj and bag label Yci can be

expressed as a set of linear constraints∑
pj ∈Pci

ypj + 1
2

≥ 1,∀Pci s .t . YPci = 1,

and ypj = −1,∀Pci s .t . YPci = −1 (1)

Then we apply a generalized soft-margin SVM to formulate the
multi-instance learning, and it can be expressed as follows:

min
ypj

min
w,b,ξ

1
2
∥w ∥2 +C

∑
pj

ξpj

s .t . ∀pj : ypj (⟨w,pj ⟩ + b) ≥ 1 − ξpj , ξpj ≥ 0,
ypj ∈ {−1, 1},and (1) hold . (2)

Finally, we follow Andrews et al. [32] to optimize the SVM, and
adopt the implementation by Yang [33]. We can re-select the truly
useful image patches by multi-instance learning.

Here we conclude the 2-stage data selection, which actually
aims for background-foreground classification via data filtering
and multi-instance learning. First, data filtering is used to remove
the image patches full of background, which makes MIL learn
more valuable knowledge and speed up the learning process. Then,
MIL further eliminates the image patches which have large area
of background, and reserves the truly useful patches. With the
selected image patches by the 2-stage data selection, we obtain the
CNN modelM3.

3.4 Stage 4: Data Synthesis
Through stages 1 to 3, we have augmented the training data via
generating and selecting the image patches. The augmented images
are the local parts of the original image, which provides more visual
information with multiple views and scales. Besides, we hope to
generate new images to enrich the variety of the training image to
boost the learning of CNNs. With the development of Internet, the
image and its textual descriptions are easily to be obtained in the
same website, as shown in Figure 2. Textual descriptions point out
the characteristics of the object in the image, which are complemen-
tary to visual information and boost the fine-grained categorization
performance [8]. Therefore, in this stage, we generate new images
by GANs based on the textual descriptions. GANs generate the new
images through learning the data distribution, which requires a
large amount of training data. It is hard to learn a good GAN model
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with only one training sample. So we augment the training data by
data proposal and data filtering, which are the first 2 stages in our
OLOS approach.

Specifically, we follow Reed et al. to train a deep convolutional
generative adversarial network (DC-GAN) [30] conditioned on
text features encoded by a hybrid character-level convolutional-
recurrent neural network [34]. In the training phase, we use the
original training image, and its augmented data through stages 1
to 3 as well as its textual descriptions. Then we feed the textual
description to the generative model of DC-GAN, whose outputs
are the generated images corresponding to the textual descriptions.
Considering the case that some generated images may have side
effects for the learning of CNNs, we also conduct data filtering on
these generated images.

3.5 Summarization of Our OLOS Approach
Here we give a summarization of our proposed OLOS approach.
We generate image patches for one training image respectively in
data proposal, and then conduct data filtering and data re-selection
to choose the truly useful patches and images. Furthermore, we
generate new images via data synthesis, and conduct data filtering
on the new generated images. Finally, we obtain the augmented data,
including the remained useful image patches and new generated
images. After all the 4 stages, we complete the data augmentation,
the variety of training data is enriched with multiple views and
scales, which plays an important role in the learning of CNNs. Using
all the augmented images, we train the CNN model M4, which is
used to categorize testing images. In our experiment, we use 16-
layer VGGNet [28] with compact bilinear pooling [35] as the basic
CNN model. It is noted that the basic CNN model can be replaced
with others, such as AlexNet [27] and GoogleNet [36]. Besides, our
OLOS approach can be on top of any existing methods, and improve
their categorization performance.

Category

Heermann

Gull

(1) a larger bird with a white head, red beak, 

grey neck and stomach with black back and 

wings.

(2) this bird has a red bill with a head in white 

color, it's body and covert though in grey 

color.

( 3 )  medium grey white and black bird with 

long grey tarsus and long orange beak.

...

Image Description

Red Legged 

Kittiwake

(1) birds head is white beek yellow and wings 

are grey feet are orange and short.

(2 )  this is a white bird with grey wings and 

orange feet.

( 3 )  this large white bird has gray wings, 

yellow bill and red tarsus and feet.

...

Bohemian

Waxwing

(1) the bird has small beak when compared to 

its body, with black throat, reddish brown 

crown and gray belly.

(2) the bird is grey with an orange crown and 

a black throat with a black eyebrow.

(3)  this fierce-looking bird has large eyes, a 

tufted head and a rounded white belly

...

Figure 4: Examples of images and their textual descriptions
in the CUB-200-2011 dataset [1].

4 EXPERIMENT
In this section, we present comprehensive experimental results and
analyses of our OLOS approach on CUB-200-2011 dataset [1] to
verify its effectiveness.

4.1 Dataset and Evaluation Metric
(I) CUB-200-2011 [1] is the most widely-used dataset for fine-
grained visual categorization task. It contains 11,788 images of
200 subcategories belonging to birds, 5,994 for training and 5,794
for testing. Each image has detailed annotations: 1 subcategory
label, 15 part locations, 312 binary attributes and 1 bounding box.
Reed et al. [34] expand the CUB-200-2011 dataset by collecting
fine-grained natural language descriptions. Ten single-sentence
descriptions are collected for each image, as shown in Figure 4. The
textual descriptions are collected through the Amazon Mechanical
Turk (AMT) platform, and required at least ten words without any
information about the fine-grained subcategories and actions.

In our experiments, we just randomly select one image and its ten
single-sentence descriptions as training data for each fine-grained
subcategory, which means that only 200 images for training. Figure
5 show some images in the training set, where one image denotes
the all training data of each subcategory in our experiment.We have
released the training data 6 used in our approach for researchers to
follow this work easily and fairly. For the testing set, it still contains
5,794 images.
(II) Accuracy is adopted to comprehensively evaluate the catego-
rization performance of our OLOS approach, which is widely used
in fine-grained visual categorization [6, 21, 23], and its definition is
as follows:

Accuracy =
Ra
R

(3)

whereR denotes the number of images in testing set, andRa denotes
the number of images that are correctly recognized.

4.2 Implementation Details
The implementation and the parameters of training the CNN model
with one sample training are as follows: We follow Gao et al. [35]
to train the compact bilinear model. First, we initialize the weights
with the network pre-trained on the ImageNet dataset, and then
conduct SGD with a minibatch size of 4. We use a weight decay of
5e−6 with a momentum of 0.9 and set the initial learning rate to 1.
The learning rate is divided by 0.25 at 600 iterations. We terminate
the training at 700 iterations.

4.3 Comparisons with State-of-the-art Methods
In this subsection, we present the experimental results on our OLOS
approach as well as all the compared methods. For fair comparison,
we conduct all the comparedmethods onlywith one sample training.
Table 1 shows that we achieve the best categorization accuracy and
improve the accuracy from 23.28% to 25.33% on CUB-200-2011
dataset [1]. From the result table, we can observe that:
• Only using one sample per subcategory for training, state-of-
the-art methods cannot achieve promising results. When using

6https://github.com/mumuhe/ACM-MM-2018-OLOS
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Figure 5: Examples of some training images, each of which is the only one training image of its subcategory.
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Figure 6: Relation of categorization accuracy andmodel size.

all the training data, i.e. about 30 images per subcategory, Com-
pact Bilinear [35] can achieve the categorization accuracy of
84.00%, but only 23.28%with one sample training, which demon-
strates that fine-grained visual categorization only with one
sample training is challenging. But when applying our proposed
OLOS approach, the categorization accuracy improves by 2.05%.
To further verify the effectiveness of our OLOS approach, we
also compare with CVL [8], which jointly models visual and tex-
tual information. CVL achieves the accuracy of 18.03%, which is
7.30% lower than ours. The application of our approach brings
CVL a 1.65% improvement. It is because that the current state-
of-the-art methods are mainly based on deep learning, which
relies on large scale of training data. Our OLOS approach can
be used on top of any existing state-of-the-arts methods, and
improve their categorization accuracy.
• CNNs need a large amount of data to learn representations
and knowledge of categorization. Data reduction will cause the
sharp decline of categorization accuracy. From Table 2, we can
see that the performances of state-of-the-art CNNs decline by
at least 51% when reducing the training data to one sample.

Method Accuracy (%)
Our OLOS Approach 25.33
Compact Bilinear [35] 23.28

CVL [8] + OLOS 19.68
CVL [8] 18.03

GoogleNet-bn [36] 14.03
VGGNet [28] 7.40
AlexNet [27] 8.14

Table 1: Comparisonswith state-of-the-artmethods onCUB-
200-2011 dataset [1].

CNNs One Sample All Training Data
GoogleNet-bn [36] 14.03% 82.30%

VGGNet [28] 7.40% 72.20%
AlexNet [27] 8.14% 59.00%

Table 2: Influence of data reduction on state-of-the-art
CNNs.

Besides, CNN with more parameters is more dependent on
large scale of data, as shown in Figure 6. Model size is directly
related to the number of parameters. Valiant [37] prove that
if the model has N parameters, training error will be close
to test error once you have more than loдN training samples.
This states: (i) Larger model requires more data. (ii) More data
achieves better performance. Therefore, among state-of-the-art
CNNs, GoogleNet-bn [36], which has the fewest parameters,
achieves the best categorization accuracy in one sample training
case.
• From above all, we can conclude that data volume is significant
to the performance of CNNs. Our OLOS approach focuses on
data augmentation to support the training of CNNs. From 4
stages of data proposal, filtering, re-selection and synthesis, we
effectively improve the categorization performance.
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(a)

(b)

(c)

Figure 7: Examples of image patches generated by the first 3 stages in our OLOS approach: (a) data proposal, (b) data filtering,
and (c) data re-selection. The image patches in red rectangles denote the image patches deleted in corresponding stage.

Figure 8: Examples of images generated by the stage 4 in
our OLOS approach: data synthesis. The images in the first
line are generated by GAN trained with one sample, and
those in the second line are generated by GAN trained with
augmented data. The images in the same column are corre-
sponding the same subcategory.

4.4 Comparisons with Other Augmentation
Methods

Traditional augmentation methods are widely used to enhance the
robustness and representation ability of the CNN model, such as
rotation, crop, and partition. It’s necessary to compare with them
to verify the effectiveness of our approach. In this subsection, we
present the categorization results of our OLOS approach compared
with the other augmentation methods. The results of all the com-
pared methods in Table 3 are obtained at the same setting that
only one training sample per subcategory is used. The compared
traditional augmentation methods are as follows:

• Rotation: The images are likely to appear in rotated state due
to the shooting angle and image post processing. We rotate
the original image by 45◦, 90◦, 135◦ and 180◦ respectively to
generate 4 new transformed images.
• Crop: We randomly crop the original image by 75%, 80%, 85%
and 90% of the original size respectively to generate 4 new
transformed images.
• Random selection: In the first stage of our OLOS approach, i.e.
data proposal, we generate hundreds of image patches, which
may contain the object, its parts or the background. We ran-
domly select 20 image patches to augment the training data.

• Partition: We directly divide the original image into 3 × 3 = 9
patches.
For the baseline method, we adopt Compact Bilinear [35] using

Tensor Sketch, and use its Caffe implementation 7. We only use
one sample per subcategory for baseline method, and then conduct
these augmentation methods on the baseline method respectively
to verify their effectiveness. These augmentation methods generate
new images or image patches to increase the data volume. However,
they generate some bad images which only contain a small area of
the object or are full of background. These bad images have side
effects on the learning of CNNs, so they decline the categorization
accuracy compared with baseline method, as shown in Table 3.
However, our OLOS approach conducts data proposal, filtering, re-
selection and synthesis to generate useful image patches to boost
the learning of CNNs.

Method Accuracy (%)
Our OLOS Approach 25.33

Baseline 23.28
Rotation 22.43
Crop 22.21

Random Selection 12.08
Partition 4.92

Table 3: Comparisons with other augmentation methods.

4.5 Effectiveness of Each Components in Our
OLOS Approach

Our OLOS approach focuses on data augmentation, which consists
of 4 stages: (1) data proposal, (2) data filtering, (3) data re-selection,
and (4) data synthesis. In this subsection, we present the effective-
ness of each stage. From Table 4, we can observe that:
• Stage 1: data proposal generates hundreds of image patches. But
some of them are bad for categorization, which has discussed
in the above subsection. So we need to select the useful image
patches from them for the learning of CNNs.
• Stage 2 and stage 3 improve the categorization accuracies by
0.63% and 1.67% respectively. They effectively select useful im-
age patches from stage 1. Figure 7 shows some results of the

7https://github.com/gy20073/compact_bilinear_pooling
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two selection processes. The image patches in the first line are
generated by data proposal. The second and third lines show
that the bad image patches are filtered at the stage 2 and stage
3 respectively. Stage 3 can further filter worse image patches
on the basis of stage 2.
• Stage 4: data synthesis further improves the categorization per-
formance. Figure 8 show some examples of generated new im-
ages. The images in the first line and second line are generated
by GANs with different training data: one sample per subcate-
gory, augmented data through stages 1, 2 and 3. We can observe
that images in second line are much better than those in the
first line, which also demonstrates the significance of data aug-
mentation. Even the generated images are not better enough,
they boost the categorization accuracy due to the fact that they
enrich the variety of the training data.

Method Accuracy (%)
OLOS-stage1+2+3+4 25.33
OLOS-stage1+2+3 24.95
OLOS-stage1+2 23.91
OLOS-stage1 12.08
Baseline 23.28

Table 4: Effectiveness of each component in our OLOS ap-
proach.

5 CONCLUSION
In this paper, the OLOS approach is proposed for fine-grained visual
categorization only with one sample training, which consists of
4 stages: data proposal, data filtering, data re-selection and data
synthesis. (1) Data proposal is to generate image patches for one
image. (2) Data filtering is to remove the image patches full of back-
ground. (3) Data re-selection is to further select the truly useful
image patches for the learning of CNNs. (4) Data synthesis is to fur-
ther generate images to enrich the variety of training image based
on its textual descriptions. Experimental results on fine-grained
visual categorization benchmark demonstrate that the application
of our OLOS approach in state-of-the-art methods achieve the best
categorization accuracy.

The future work lies in two aspects: First, we will focus on how to
learn better image generation with one image-text pair to enrich the
variety of the training data. Second, we will explore the k-sample
training problem, which is also significant for the fine-grained
visual categorization task.
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